un 2 00 1 On solutions of the q - hypergeometric equation with q N = 1

نویسنده

  • Yoshihiro Takeyama
چکیده

We consider the q-hypergeometric equation with q = 1 and α, β, γ ∈ Z. We solve this equation on the space of functions given by a power series multiplied by a power of the logarithmic function. We prove that the subspace of solutions is twodimensional over the field of quasi-constants. We get a basis for this space explicitly. In terms of this basis, we represent the q-hypergeometric function of the Barnes type constructed by Nishizawa and Ueno. Then we see that this function has logarithmic singularity at the origin. This is a difference between the q-hypergeometric functions with 0 < |q| < 1 and at |q| = 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 D ec 2 00 6 Hypergeometric solutions to the q - Painlevé equation of type

We consider the q-Painlevé equation of type A (1) 4 (a version of qPainlevé V equation) and construct a family of solutions expressible in terms of certain basic hypergeometric series. We also present the determinant formula for the solutions. AMS classification scheme numbers: 34M55, 39A13, 33D15, 33E17

متن کامل

Hypergeometric τ Functions of the q - Painlevé Systems of Type ( A 2 + A 1 ) ( 1 )

We consider a q-Painlevé III equation and a q-Painlevé II equation arising from a birational representation of the affine Weyl group of type (A2 + A1). We study their hypergeometric solutions on the level of τ functions.

متن کامل

-Surface q-Painlevé IV Equation

We consider a q-Painlevé IV equation which is the A (1) 4 -surface type in the Sakai’s classification. We find three distinct types of classical solutions with determinantal structures whose elements are basic hypergeometric functions. Two of them are expressed by 2φ1 basic hypergeometric series and the other is given by 2ψ2 bilateral basic hypergeometric series.

متن کامل

Fermionic representation for basic hypergeometric functions related to Schur polynomials

We present the fermionic representation for the q-deformed hypergeometric functions related to Schur polynomials. For q = 1 it is known that these hypergeometric functions are related to zonal spherical polynomials for GL(N,C)/U(N) symmetric space. We show that multivariate hypergeometric functions are tau-functions of the KP and of the two-dimensional Toda lattice hierarchies. The variables of...

متن کامل

ar X iv : m at h / 03 10 00 5 v 1 [ m at h . N T ] 1 O ct 2 00 3 QUANTUM INTEGERS AND CYCLOTOMY

A sequence of functions F = {fn(q)}∞ n=1 satisfies the functional equation for multiplication of quantum integers if fmn(q) = fm(q)fn(qm) for all positive integers m and n. This paper describes the structure of all sequences of rational functions with coefficients in Q that satisfy this functional equation. 1. The functional equation for multiplication of quantum integers Let N = {1, 2, 3, . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008